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In his contributions [ l-31 to the theory of shells, Kil’chevskii derives 

a general method of solving the static problem of the theory of shells 

by reducing this problem to the treatment of a certain system of integral 

equations. In the following we give the results of further development 

of his method with reference and application to the case of cylindrical 

she1 1s. 

The system of the integro-differential equations of equilibrium of a 

cylindrical shell is obtained on the basis of the theorem of work reci- 

procity (Theorem of Betti [ 41 1. According to this Theorem we consider, 

in the well-known manner, two systems of forces and displacements: the 

first system consists of prescribed forces and sought displacements, the 

second one consists of auxiliary forces and auxiliary displacements. 

We treat the cylindrical shell as a continuous three-dimensional 

medium. The middle surface of the shell is used as coordinate surface, 

and the position of a point on this surface is determined by the coordi- 

nates x and s; these are the distance along a generator and the length of 

the arc of the directing curve, respectively (see Fig. 1). The third co- 
ordinate z is the distance, measured along the normal, between the point 

M(X, S) of the middle surface and a point considered; z varies between the 

limits - l/2 h and + l/2 h, where h is the constant thickness of the shell. 

Assume that a concentrated unit force, acting in the direction e. of 

the local reference coordinates, is applied to the middle surface o’f the 

shell at the point N(rN, sN) of that surface. The component of the linear 

displacement, produced by this force at an arbitrary point M(x, s), in 

the direction co shall be denoted by a( j~,x (M; N). Here and in the fol low- 
ing the subscript in the parentheses indicates the direction of the force. 

The angle of rotation of the normal to the middle surface at the point M 

around 
5 

shall be denoted by w(~),, (M; N). The stress resultants and stress 
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couples at an arbitrary point L(xL, sL) of the boundary contour shall be 

denoted by T( j)a(L; N) Td3:($p (L; N), respectively. The subscripts a. 

j assume the values 1, , e subscript y assumes the values 1, 2. This 

will be our basic system of loads and displacements. 

Fig. 1. Fig. 2. 

NOW imagine the cylindrical shell rolled out into a plane and consider 

the resulting rectangular plate (Fig. 2). Assume a concentrated unit 

force parallel to C= to be applied to the plate at the pbint Y(x, s) of 

the latter. The linear and angular displacements, arising at an arbitrary 

point NC xN, sN) of the plate as a result oi the action of that force, 

shall be denoted by u(=~p(N; M), $(,),(N; M). respectively, while the 
stress resultants and s ress couples acting along the boundary line shall 

be denoted by Sf,p(L; Ml. Mfa~y(L; M), respectively, where p = 1, 2, 3. 

Let us impose the displacements v 
CQP 

upon the points of the middle 
surface of the shell. 

In order to produce these displacements in the shell, we have to apply 

to the shell some loads distributed over the curved as well as the bound- 

ary surfaces in addition to 

loading is replaced, in the 

ings: 

(a) the loading 

the points of the 

the concentrated unit force. This additional 

thkory of thin shells, by the following load- 

!) and the moments Gt,),,(Q; Ml, applied to 

(b) the auxiliary stress resultants S (,)@L; M) and stress couples 
CL; 

k1Y. 
M), applied to the boundary contour of the middle surface of the 

The stress resultants S 

I 
Q)B 

and the stress couples M 

Ib 
Q y differ 

from the corresponding quantit es of the plate by terms, wh c disappear 

t.ogether with the curvature of the shell. The displacements v 
(a)P 

and the 
loadings necessary to produce them in the shell will be used as our 

auxiliary system. 

The theorem of work reciprocity, if applied to our basic and auxiliary 
systems of forces and displacements. permits to write down the following 
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system of integro-differential equations: 

where 

I3 (a) 1 = K(a) 1 * %x, 2 = K(O) 3 + kG(a} 1 

“(a) 3 = K(a) 8 + ax a G(a) 2 + -it GW 1 

A (j) OL t”; N, = 5 i*(j) p fL; N) “(a) p fL; M) + L(j) y (L; N) P(a) j (Id; M) - 

-G(a) tk; Mf U(j) 3 tLi NJ -‘(a) p fL; W '(j) p tL; N) - 
b 

while k = k(s) denotes the principal curvature of the middle surface of 

the shell. 

The equations (1) represent the fundamental system of integro-diffe- 

rential equations of equilibrium of cylindrical shells. Determination of 

the nine functions u 

4 

j)a(M; N) leads to Green’s tensor, which permits to 

find the displacemen s produced by the arbitrary loading. 

The system (1) shows that the desired displacements represent sums of 

two terms. The first term is the corresponding displacement of a point 

at the middle plane of the plate. The second term, containing an integral 
over the middle surface of the shell and its boundary line, expresses the 

general influence of the shell curvature and of the difference of the 

boundary conditions of plate and shell on the displacements of the points 

of the middle surface of the shell. Consequently, the best version of the 

auxiliary system is the one derived from the solution of the problem of 

the plate under the action of a concentrated unit force, with boundary 

conditions which are identical to those of the shell. In the worst case, 

if the solution of the corresponding problem of the plate is difficult, 

the auxiliary displacements are to be represented by a sum of the form 

where the V(c)p are functions possessing a singularity corresponding to 
the action of a concentrated unit force on a plate, to be determined by 
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solving the known problems: the one of the two-dimensional theory of 

eiasticity [ 41 and the other of the theory of plates in bending [5] ; 

“(a)P 
are arbitrary functions, regular on the middle surface of the shell. 

The functions u[c,p determine such displacements of the points at the 

middle surface of the shell, which are produced by some non-concentrated 

forces and which are not necessarily solutions of the homogeneous equa- 

tions of the problems indicated above; these functions are being intro- 

duced for the purpose of satisfying the boundary conditions of the shell. 
It will become evident in the following that the displacements V’ 

produce a change in the structure of the equations (1). 
(o)P 

We shall determine the roots H(o)p of the system (11 of equations by 

means of the differential equations of equilibrium for an element of the 
middle surface of the cylindrical shell. These equations are, in their 

general form 

Rio (~(a) b I+ Ri” (~(a) 3) + H(a) i = 0 (a, p, i = 1, 2, 3) (3) 

where Ri 0 and Ri 
k 

are homogeneous linear operators for the displacements; 

the first of these operators refers to the plate, while the second vanishes 

together with the curvature of the shell; the H 
(a) i 

represent the compo- 
nents of the external load. 

If the auxiliary displacements satisfy the corresponding boundary con- 

ditions of the pIaLe, then the roots of the equations (11 are determined 

1, but if the displacements are chosen in the 

(c)i 
are determined by the sum 

’ H(OI) i = - I’i” (V(a) p ) - Rik (~(a) p) 

Let us apply the results just obtained to the solution of the problem 

of a cticular cylindrical shell acted upon by a concentrated normal force 

P and hinged along its edges. 

If the auxiliary displacements are available in the form of double 

trigonometric series, then the three components of displacement of a 

point at the middle surface can be represented by means of closed express- 
ions. 

The displacements produced by a concentrated normal unit force in a 

plate with movable hinged supports are of the form 

u(3) 1 = V(n)2 = 0 

z’(3j 3 (N; M) 1 a32 C,,sinmX?sin YsinFZ!? sin 7 
a a 

mn 
(4) 

where 
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a*=*ash c mn = (m* + A2nz)-2, D= Eh3 

+D ’ 12(1-q ’ 
h = _; 

where E is the modulus of elasticity of first kind and v is Poisson’s 

ratio. 

We consider here in some detail the solution of the plane problem of 

the theory of elasticity by means of double trigonometric series. 

The required displacements, produced by the concentrated unit force 

directed along the a-th coordinate line satisfy the system of equations 

where 
1 when a = k 

Q- 
-(I-G)/Eh whenN=M 

0 when NfM 

If the solution of the system (5) is to be obtained in the form of 

double trigonometric series, then we have 

v(r) i (N; M) = a1 2 a,,,,, cos m$ sin y cos F sin y 
mn 

nxsN 
v(I) B (N; M) = aa 2 b,, cos m$ sin y sin m> coy_- 

a 
mn 

vte) 1 (N; W = yl) 2 (M; N! 

nxsN 
ZJ(~) 2 (N; M) = a1 2 u&~ sin F cos ‘!! sin F ~0s b 

mn 

where 

a2 = _ 4 (i + v)’ ‘h2 
x’Eh 

a mn = 
m2 + 2 / (1 - v)x’+ b 

(d + hw)a ’ mn 

a& = 1 
( 
h2 na f 2 

(ma + xa 9)s 
- ma 
i-v > 

(‘3) 

If the auxiliary displacements are chosen in the form (4) and (6), 
then the system of the integro-differential equations (1) assumes, in 

the case of the problem stated above, the form [ 61 
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f4,(il4; N)=-j\ H(,) s (Q; Ml us (Q; N) dxQ da* 
00 
ab 

IQ(M;N)=- ss H(,, s (Q; Ml ua (Q; 4 dxQ dsQ 
00 

us (M; NJ = ys) 3 ( N; W-[\IH,,,, (Q; M)ul(Q; N) + 

+ H(s) 2 (Q; M) us (0; NJ + Ht:;3 (Q; W us (Q; WI dxQ dug 

(7) 

The roots H(c)p of the system (7) are determined on the basis of the 

differential equations of equilibrium of the general technical bending 

theory of thin shells developed by Vlasov [ 71. So we have 

H(a) a (Q; M) = pa 2 B,, sin m< cos n!!sinmG sin n!! 
mn 

H(a) a (Q; M) = Ta 2 ymn sin 7 sin y sin + sin ‘!! 
mn 

(8) 

(9) 

where 

PI = G , A,, := ;($I A”-;;) 

f+*khz, B 
na 

~~~n~m~IY(1+V)-221/(1--)--‘h~~‘~ 
(ma + ha .y 

Eliminating u1 and u2 from the third equation with the aid of the 
first two equations, we can reduce the system (7) of integral equations 
to the one integral equation 

ab 

~a (M; N) = Py3) 3 ( M; N) - \ \ Ft,) s (Q; W UI) (Q; N) dzg drg 

00 
W) 
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The solution of the equation (10) can be written in the form 

US (M; N) = 2 Pa&,,sin mlrrN sin ‘T 
a 

+ L,, (N) 1 sin y sin y (11) mn 
where LIIn(N) are unknown coefficients. Substituting (11) into (10) and 
making use of the orthogonality of the trigonometric functions in the 

interval considered, we obtain an equation for the determination of 

Lsa (N) . 

Ultimately we get 

where 

us (M; N) = T [u. (M; N) - uk (M; N)] (14 

From the relations (8) and (12) we find the quantities H(1)7, Ht2)? 

and a 7 ; 
substituting the results into the first two equations of the 

system (7) and carrying out the quadratures, we find 

~1 (M; N) = 6 2 K,, sin m-sin 7 cos mz sin y 
a a 

mn 

us (M; N) = 6 2 N,, sin mT sin 7 sin mx5 cos !!E 
a b 

mn 

(13) 

(14) 

where 
4PApR 

6=------ 
nEha ’ K 

m (vm” - h2na) 

mn = A * Nnm= 
n [ma (2 + v) + hW] 

mn =Kz + Aa n2)* + pm4 

A mn 
A 

The solution obtained coincides completely with the results given for 
the same problem in Vlasov’ s book [ 7 1. 

Thus we arrive at the following conclusion: if, in setting up the 

differential and integral equations, for the equilibrium of one and the 

same shell, we start from the same assumptions, then the two sets of 

results are ident ical. 
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