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In his contributions [ 1-3] to the theory of shells, Kil’chevskii derives
a general method of solving the static problem of the theory of shells
by reducing this problem to the treatment of a certain system of integral
equations. In the following we give the results of further development
of his method with reference and application to the case of cylindrical
shells.

The system of the integro-differential equations of equilibrium of a
cylindrical shell is obtained on the basis of the theorem of work reci-
procity (Theorem of Betti [41). According to this Theorem we consider,
in the well-known manner, two systems of forces and displacements: the
first system consists of prescribed forces and sought displacements, the
second one consists of auxiliary forces and auxiliary displacements.

We treat the cylindrical shell as a continuous three-dimensional
medium. The middle surface of the shell is used as coordinate surface,
and the position of a point on this surface is determined by the coordi-
nates x and s; these are the distance along a generator and the length of
the arc of the directing curve, respectively (see Fig. 1). The third co-
ordinate z is the distance, measured along the normal, between the point
M(x, s) of the middle surface and a point considered; : varies between the
limits — 1/2 h and + 1/2 h, where h is the constant thickness of the shell.

Assume that a concentrated unit force, acting in the direction e. of
the local reference coordinates, is applied to the middle surface of the
shell at the point N(zN, sN) of that surface. The component of the linear
displacement, produced by this force at an arbitrary point M(x, s), in
the direction L shall be denoted by u/ . a(M; N). Here and in the follow-
ing the subscript in the parentheses indicates the direction of the force.
The angle of rotation of the normal to the middle surface at the point M
around LY shall be denoted by w(j)y(M; N). The stress resultants and stress
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couples at an arbitrary point L(xg, sL) of the boundary contour shall be
denoted by T, . a(L; N) and L(.Aa(L; N), respectively. The subscripts a,

j assume the values 1, 2, 3; { e subscript y assumes the values 1, 2. This
will be our basic system of loads and displacements.
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Now imagine the cylindrical shell rolled out into a plane and consider
the resulting rectangular plate (Fig. 2). Assume a concentrated unit
force parallel to LR to be applied to the plate at the point M(x, s) of
the latter. The linear and angular displacements, arising at an arbitrary
point N(zN, sN) of the plate as a result of the action of that force,
shall be denoted by v al (N; M), ¢¢1 (N; M), respectively, while the
stress resultants and stress couples acting along the boundary line shall
be denoted by S(a)ﬁ(L; M, ”Ca)y(L; M), respectively, where 8= 1, 2, 3.

Let us impose the displacements "(a)ﬁ upon the points of the middle
surface of the shell.

In order to produce these displacements in the shell, we have to apply
to the shell some loads distributed over the curved as well as the bound-
ary surfaces in addition to the concentrated unit force. This additional
loading is replaced, in the theory of thin shells, by the following load-
ings:

(a) the loading K/ 1g(Q; M) and the moments G(a)y(Q; M, applied to
the points of the mi dze surface;

(b) the auxiliary stress resultants.s(a) (L; M) and stress couples
M(a2¥(L; M), applied to the boundary contour of the middle surface of the

shell. The stress resultants S a)B and the stress couples ¥ a differ
from the corresponding quantitSes of the plate by terms, whgc disappear
together with the curvature of the shell. The displacements v and the

(a)
loadings necessary to produce them in the shell will be used as Qur

auxiliary system,

The theorem of work reciprocity, if applied to our basic and auxiliary
systems of forces and displacements, permits to write down the following
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system of integro-differential equations:
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while k = k(s) denotes the principal curvature of the middle surface of
the shell.

The equations (1) represent the fundamental system of integro-diffe-
rential equations of equilibrium of cylindrical shells. Determination of
the nine functions u a(M; N) leads to Green's tensor, which permits to
find the displacemen&s produced by the arbitrary loading,

The system (1) shows that the desired displacements represent sums of
two terms. The first term is the corresponding displacement of a point
at the middle plane of the plate. The second term, containing an integral
over the middle surface of the shell and its boundary line, expresses the
general influence of the shell curvature and of the difference of the
boundary conditions of plate and shell on the displacements of the points
of the middle surface of the shell, Consequently, the best version of the
auxiliary system is the one derived from the sclution of the problem of
the plate under the action of a concentrated unit force, with boundary
conditions which are identical to those of the shell. In the worst case,
if the solution of the corresponding problem of the plate is difficult,
the auxiliary displacements are to be represented by a sum of the form

a8 = Viayg'+vayp (2)

where the V(a are functions possessing a singularity corresponding to
the action of a concentrated unit force on a plate, to be determined by
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solving the known problems: the one of the two-dimensional theory of
elasticity [ 4] and the other of the theory of plates in bending [5];
”fa)ﬁ are arbitrary functions, regular on the middle surface of the shell.
The functions v’a determine such displacements of the points at the
middle surface of the shell, which are produced by some non-concentrated
forces and which are not necessarily solutions of the homogeneous equa-
tions of the problems indicated above; these functions are being intro-
duced for the purpose of satisfying the boundary conditions of the shell.
It will become evident in the following that the displacements "Ea)ﬁ

produce a change in the structure of the equations (1).

We shall determine the roots H(a) of the system (1) of equations by
means of the differential equations of equilibrium for an element of the
middle surface of the cylindrical shell. These equations are, in their
general form

° k .
R (vyp )+ By (0ayg) + Higy; =0 (@, B, i=1,2,3) (3)
where Rio and Rik are homogeneous linear operators for the displacements;
the first of these operators refers to the plate, while the second vanishes

together with the curvature of the shell; the H(a)i represent the compo-
nents of the external load.

If the auxiliary displacements satisfy the corresponding boundary con-
ditions of the plate, then the roots of the equations (1) are determined
by the operator Rik(”(a) ), but if the displacements are chosen in the
form (2), then the roots H(a)i are determined by the sum

0, k
Hgyi = = B" 00y o) = B" (v )

Let us apply the results just obtained to the solution of the problem
of a ctrcular cylindrical shell acted upon by a concentrated normal force
P and hinged along its edges.

If the auxiliary displacements are available in the form of double
trigonometric series, then the three components of displacement of a
point at the middle surface can be represented by means of closed express-
ions.

The displacements produced by a concentrated normal unit force in a
plate with movable hinged supports are of the form

Vg1 = Vg =0
MRT,, . nus
N g N

S )

. . 1 . mnzr . nms .
T(3) 3 (N; M) = agz Cmnsm.?‘ sm_b_ sin
mn
where
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ag = 4ax c — (mz + )\2n2)-2' D = E._._ha _ A == .Z—-

D’ mn 122(1—v8) '’
where E is the modulus of elasticity of first kind and v is Poisson’s

ratio.

We consider here in some detail the solution of the plane problem of
the theory of elasticity by means of double trigonometric series.

The required displacements, produced by the concentrated unit force
directed along the a-th coordinate line satisfy the system of equations

Powy Aty Py | A=y Py
oz 2 2 dzydsy 2 Osp? )1
S
1—v ey | 14y 9, )y g% (a=1,2)
2 oxzp? 2 dzy sy ED )2
where
5 __ [ 1 whena=k q= —~ ({1 —v)/Eh whenN=M
@k 0 when a =k’ 0 when N = M
If the solution of the system (5) is to be obtained in the form of
double trigonometric series, then we have
mnx . BTS mnry . RESy
vy1 WV M) = Zamncos_g_sm_b_cos - sin —
mn
mrx . nms . MATy nrsy
%) (N, M) = aqmzn b, €O8 . sin 5 sin r cos (6)

v(g)l(N; M) =v(1)2(M;N)

. . \ 0 i, MTT nms _,  MTEN sy
Vigyg (N M) =0y Zamn sm_a_cos _b_.sm cos

a
mn
where
A (1—)2 A e
S 5 N I S
Cmr42/(1— b - mn
mn = (m? + A%n2)? ’ mn T (m? - A gyt

al .___.‘_____. (7\2 n? 4 2 mn)

mn = (1 A8 na) i—v

If the auxiliary displacements are chosen in the form (4) and (6),
then the system of the integro-differential equations (1) assumes, in
the case of the problem stated above, the form [ 6]
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u (M; Ny = Hy 3 (Q M)us(Q; N)dzqdsg
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°e/=ﬂ omp

(i
0
-
°
M
ab
us (M N) = gy o (V5 M) —\ {1y, @5 D1 @ M) +
00
+ Hgy o (Q M)us (Q; N) + Hgy g (Q; M) us (Q; N)] dzgdag
The roots H of the system (7) are determined on the basis of the

differential equations of equilibrium of the general technical bending
theory of thin shells developed by Vlasov [7]. So we have
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Eliminating uy and u, from the third equation with the aid of the
first two equations, we can reduce the system (7) of integral equations

to the one integral equation

ug (M; N) = Py, 4 (M; N) — F(s)s(Q; M) us (Q; N)dzqd‘q (10)

Oe 20
Co >
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where

ab
Fiays (@ My =Hg o (Q: M) —SSH(3)B(P; M) H gy 4 (Q; P)dz,ds, (8=1,2)
00

The solution of the equation (10) can be written in the form

) mnzx RS 5
ug (M; N) = ) [Pascmn sin — N sin "bA 4+ L (N)] sin mT"sm 1’; (11)
mn

where L.n(N) are unknown coefficients. Substituting (11) into (10) and
making use of the orthogonality of the trigonometric functions in the

interval considered, we obtain an equation for the determination of
L_ (N).

an

Ultimately we get

us (M; N) f————[ o (M; N) —uy (M; N)] (12)
where
4A 1 . MRy . ATS N mnx nws
Ug = Py Z CIESTD sin p sin 5 sin - sin
47\p. md L My L WSy mrz nws
Up = 2 (,mz RER2)E [(ri® I R ] sin - sin 5 sin — sin -

C12(1—v?) at
P

From the relations (8) and (12) we find the quantities H(l)B' H(2)3
and ua; substituting the results into the first two equations of the
system (7) and carrying out the quadratures, we find

mnz n nws N mr nms

uy (M; N):BZKmnsin - 5 C08 —— sm_b_. (13)
mn
mnz
ug (M; N)=13% ZN"m sin ﬂaN sin m;:" sin T:_x cos "’;S (14)
mn
vhere 4P)pR m (vm? — A%n?) n[m2 (2 + v) 4 An?)
= WEha ’ mn - Amn ’ Nmn: Am‘n

A= (m? 4 22 %)% 4 pmt

The solution obtained coincides completely with the results given for
the same problem in Vlasov's book [7].

Thus we arrive at the following conclusion: if, in setting up the
differential and integral equations, for the equilibrium of one and the

same shell, we start from the same assumptions, then the two sets of
results are identical,
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